↳ ITRS
↳ ITRStoIDPProof
z
exp(x, y) → if(>@z(y, 0@z), x, y)
cu(TRUE, x) → cu(<@z(x, exp(10@z, 2@z)), +@z(x, 1@z))
if(FALSE, x, y) → 1@z
if(TRUE, x, y) → *@z(x, exp(x, -@z(y, 1@z)))
exp(x0, x1)
cu(TRUE, x0)
if(FALSE, x0, x1)
if(TRUE, x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
z
exp(x, y) → if(>@z(y, 0@z), x, y)
cu(TRUE, x) → cu(<@z(x, exp(10@z, 2@z)), +@z(x, 1@z))
if(FALSE, x, y) → 1@z
if(TRUE, x, y) → *@z(x, exp(x, -@z(y, 1@z)))
(0) -> (0), if ((+@z(x[0], 1@z) →* x[0]a)∧(<@z(x[0], exp(10@z, 2@z)) →* TRUE))
(0) -> (1), if ((+@z(x[0], 1@z) →* x[1])∧(<@z(x[0], exp(10@z, 2@z)) →* TRUE))
(1) -> (2), if (EXP(10@z, 2@z) →* EXP(x[2], y[2]))
(2) -> (3), if ((x[2] →* x[3])∧(y[2] →* y[3])∧(>@z(y[2], 0@z) →* TRUE))
(3) -> (2), if ((-@z(y[3], 1@z) →* y[2])∧(x[3] →* x[2]))
exp(x0, x1)
cu(TRUE, x0)
if(FALSE, x0, x1)
if(TRUE, x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
z
exp(x, y) → if(>@z(y, 0@z), x, y)
if(FALSE, x, y) → 1@z
if(TRUE, x, y) → *@z(x, exp(x, -@z(y, 1@z)))
(0) -> (0), if ((+@z(x[0], 1@z) →* x[0]a)∧(<@z(x[0], exp(10@z, 2@z)) →* TRUE))
(0) -> (1), if ((+@z(x[0], 1@z) →* x[1])∧(<@z(x[0], exp(10@z, 2@z)) →* TRUE))
(1) -> (2), if (EXP(10@z, 2@z) →* EXP(x[2], y[2]))
(2) -> (3), if ((x[2] →* x[3])∧(y[2] →* y[3])∧(>@z(y[2], 0@z) →* TRUE))
(3) -> (2), if ((-@z(y[3], 1@z) →* y[2])∧(x[3] →* x[2]))
exp(x0, x1)
cu(TRUE, x0)
if(FALSE, x0, x1)
if(TRUE, x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ AND
↳ IDP
↳ UsableRulesProof
↳ IDP
z
exp(x, y) → if(>@z(y, 0@z), x, y)
if(FALSE, x, y) → 1@z
if(TRUE, x, y) → *@z(x, exp(x, -@z(y, 1@z)))
(2) -> (3), if ((x[2] →* x[3])∧(y[2] →* y[3])∧(>@z(y[2], 0@z) →* TRUE))
(3) -> (2), if ((-@z(y[3], 1@z) →* y[2])∧(x[3] →* x[2]))
exp(x0, x1)
cu(TRUE, x0)
if(FALSE, x0, x1)
if(TRUE, x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ AND
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
z
(2) -> (3), if ((x[2] →* x[3])∧(y[2] →* y[3])∧(>@z(y[2], 0@z) →* TRUE))
(3) -> (2), if ((-@z(y[3], 1@z) →* y[2])∧(x[3] →* x[2]))
exp(x0, x1)
cu(TRUE, x0)
if(FALSE, x0, x1)
if(TRUE, x0, x1)
(1) (x[2]=x[3]∧y[2]=y[3]∧>@z(y[2], 0@z)=TRUE∧x[3]=x[2]1∧-@z(y[3], 1@z)=y[2]1 ⇒ IF(TRUE, x[3], y[3])≥NonInfC∧IF(TRUE, x[3], y[3])≥EXP(x[3], -@z(y[3], 1@z))∧(UIncreasing(EXP(x[3], -@z(y[3], 1@z))), ≥))
(2) (>@z(y[2], 0@z)=TRUE ⇒ IF(TRUE, x[2], y[2])≥NonInfC∧IF(TRUE, x[2], y[2])≥EXP(x[2], -@z(y[2], 1@z))∧(UIncreasing(EXP(x[3], -@z(y[3], 1@z))), ≥))
(3) (y[2] + -1 ≥ 0 ⇒ (UIncreasing(EXP(x[3], -@z(y[3], 1@z))), ≥)∧-1 + (-1)Bound + y[2] ≥ 0∧0 ≥ 0)
(4) (y[2] + -1 ≥ 0 ⇒ (UIncreasing(EXP(x[3], -@z(y[3], 1@z))), ≥)∧-1 + (-1)Bound + y[2] ≥ 0∧0 ≥ 0)
(5) (y[2] + -1 ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(EXP(x[3], -@z(y[3], 1@z))), ≥)∧-1 + (-1)Bound + y[2] ≥ 0)
(6) (y[2] + -1 ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧(UIncreasing(EXP(x[3], -@z(y[3], 1@z))), ≥)∧0 = 0∧-1 + (-1)Bound + y[2] ≥ 0)
(7) (y[2] ≥ 0 ⇒ 0 = 0∧0 ≥ 0∧(UIncreasing(EXP(x[3], -@z(y[3], 1@z))), ≥)∧0 = 0∧(-1)Bound + y[2] ≥ 0)
(8) (EXP(x[2], y[2])≥NonInfC∧EXP(x[2], y[2])≥IF(>@z(y[2], 0@z), x[2], y[2])∧(UIncreasing(IF(>@z(y[2], 0@z), x[2], y[2])), ≥))
(9) ((UIncreasing(IF(>@z(y[2], 0@z), x[2], y[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(10) ((UIncreasing(IF(>@z(y[2], 0@z), x[2], y[2])), ≥)∧0 ≥ 0∧0 ≥ 0)
(11) (0 ≥ 0∧(UIncreasing(IF(>@z(y[2], 0@z), x[2], y[2])), ≥)∧0 ≥ 0)
(12) (0 = 0∧0 = 0∧0 = 0∧0 ≥ 0∧(UIncreasing(IF(>@z(y[2], 0@z), x[2], y[2])), ≥)∧0 ≥ 0∧0 = 0)
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(0@z) = 0
POL(TRUE) = 0
POL(EXP(x1, x2)) = -1 + x2
POL(FALSE) = -1
POL(IF(x1, x2, x3)) = -1 + x3
POL(1@z) = 1
POL(undefined) = -1
POL(>@z(x1, x2)) = -1
IF(TRUE, x[3], y[3]) → EXP(x[3], -@z(y[3], 1@z))
IF(TRUE, x[3], y[3]) → EXP(x[3], -@z(y[3], 1@z))
EXP(x[2], y[2]) → IF(>@z(y[2], 0@z), x[2], y[2])
-@z1 ↔
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ AND
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
↳ IDP
z
exp(x0, x1)
cu(TRUE, x0)
if(FALSE, x0, x1)
if(TRUE, x0, x1)
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ AND
↳ IDP
↳ IDP
↳ IDPNonInfProof
z
exp(x, y) → if(>@z(y, 0@z), x, y)
if(FALSE, x, y) → 1@z
if(TRUE, x, y) → *@z(x, exp(x, -@z(y, 1@z)))
(0) -> (0), if ((+@z(x[0], 1@z) →* x[0]a)∧(<@z(x[0], exp(10@z, 2@z)) →* TRUE))
exp(x0, x1)
cu(TRUE, x0)
if(FALSE, x0, x1)
if(TRUE, x0, x1)
(1) (+@z(x[0], 1@z)=x[0]1∧<@z(x[0]1, exp(10@z, 2@z))=TRUE∧+@z(x[0]1, 1@z)=x[0]2∧<@z(x[0], exp(10@z, 2@z))=TRUE ⇒ CU(TRUE, x[0]1)≥NonInfC∧CU(TRUE, x[0]1)≥CU(<@z(x[0]1, exp(10@z, 2@z)), +@z(x[0]1, 1@z))∧(UIncreasing(CU(<@z(x[0]1, exp(10@z, 2@z)), +@z(x[0]1, 1@z))), ≥))
(2) (<@z(+@z(x[0], 1@z), 100@z)=TRUE∧<@z(x[0], 100@z)=TRUE ⇒ CU(TRUE, +@z(x[0], 1@z))≥NonInfC∧CU(TRUE, +@z(x[0], 1@z))≥CU(<@z(+@z(x[0], 1@z), exp(10@z, 2@z)), +@z(+@z(x[0], 1@z), 1@z))∧(UIncreasing(CU(<@z(x[0]1, exp(10@z, 2@z)), +@z(x[0]1, 1@z))), ≥))
(3) (98 + (-1)x[0] ≥ 0∧99 + (-1)x[0] ≥ 0 ⇒ (UIncreasing(CU(<@z(x[0]1, exp(10@z, 2@z)), +@z(x[0]1, 1@z))), ≥)∧-2 + (-1)Bound + (-1)x[0] ≥ 0∧0 ≥ 0)
(4) (98 + (-1)x[0] ≥ 0∧99 + (-1)x[0] ≥ 0 ⇒ (UIncreasing(CU(<@z(x[0]1, exp(10@z, 2@z)), +@z(x[0]1, 1@z))), ≥)∧-2 + (-1)Bound + (-1)x[0] ≥ 0∧0 ≥ 0)
(5) (98 + (-1)x[0] ≥ 0∧99 + (-1)x[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(CU(<@z(x[0]1, exp(10@z, 2@z)), +@z(x[0]1, 1@z))), ≥)∧-2 + (-1)Bound + (-1)x[0] ≥ 0)
(6) (98 + (-1)x[0] ≥ 0∧99 + (-1)x[0] ≥ 0∧x[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(CU(<@z(x[0]1, exp(10@z, 2@z)), +@z(x[0]1, 1@z))), ≥)∧-2 + (-1)Bound + (-1)x[0] ≥ 0)
(7) (98 + x[0] ≥ 0∧99 + x[0] ≥ 0∧x[0] ≥ 0 ⇒ 0 ≥ 0∧(UIncreasing(CU(<@z(x[0]1, exp(10@z, 2@z)), +@z(x[0]1, 1@z))), ≥)∧-2 + (-1)Bound + x[0] ≥ 0)
POL(-@z(x1, x2)) = x1 + (-1)x2
POL(exp(x1, x2)) = -1 + (-1)x1
POL(0@z) = 0
POL(*@z(x1, x2)) = x1·x2
POL(TRUE) = -1
POL(2@z) = 2
POL(FALSE) = -1
POL(<@z(x1, x2)) = -1
POL(>@z(x1, x2)) = -1
POL(CU(x1, x2)) = -1 + (-1)x2
POL(if(x1, x2, x3)) = -1 + (-1)x3 + (-1)x2 + (-1)x1
POL(10@z) = 10
POL(+@z(x1, x2)) = x1 + x2
POL(1@z) = 1
POL(undefined) = -1
CU(TRUE, x[0]) → CU(<@z(x[0], exp(10@z, 2@z)), +@z(x[0], 1@z))
CU(TRUE, x[0]) → CU(<@z(x[0], exp(10@z, 2@z)), +@z(x[0], 1@z))
+@z1 ↔
↳ ITRS
↳ ITRStoIDPProof
↳ IDP
↳ UsableRulesProof
↳ IDP
↳ IDependencyGraphProof
↳ AND
↳ IDP
↳ IDP
↳ IDPNonInfProof
↳ IDP
↳ IDependencyGraphProof
z
exp(x, y) → if(>@z(y, 0@z), x, y)
if(FALSE, x, y) → 1@z
if(TRUE, x, y) → *@z(x, exp(x, -@z(y, 1@z)))
exp(x0, x1)
cu(TRUE, x0)
if(FALSE, x0, x1)
if(TRUE, x0, x1)